
Effects of Thermal History on Surface 
Structures, Hydration, and Mechanical 

Response of PPG Float Glass

Alexandra Howzen, Nisha Sheth, Seong Kim
Sept 18, 2017



Normal stress
Shear stress

Si-O-Si, AlO4
-

Si-O-, Si-OH , Al-OH
H2O

(1) Hydration
(2) Dehydration

(3) Dehydroxylation

Processing

Surface 
Structure

Mechanical 
Properties

How Do Heat Treatments Alter Mechanical, 
Chemical, and Compositional Properties?

Thermal factors such as heating rate, 
maximum temperature, and cooling 

rate contribute to a material’s 
thermal history

2



Normal stress
Shear stress

Si-O-Si, AlO4
-

Si-O-, Si-OH , Al-OH
H2O

(1) Hydration
(2) Dehydration

(3) Dehydroxylation

Processing

Surface 
Structure

Mechanical 
Properties

How Do Heat Treatments Alter Mechanical, 
Chemical, and Compositional Properties?

Thermal factors such as heating rate, 
maximum temperature, and cooling rate 
contribute to a material’s thermal history

• Heat treatments allow for atomic restructuring 
via dehydration and dehydroxylation reactions

• These changes impact how the glass reacts to 
mechanical stresses especially when varying 
relative humidity (RH)
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As Received
No residual stress

Annealed
No residual stress

Quenched
Complex 
compressive 
residual stress

Sample Preparation

Cleaned by rinsing with DI Water, 
Ethanol, and DI water. Blow dry 
using nitrogen. UV-Ozone.

Ramp to 550°C in one hour; Soak 
at 550°C for 2 hours; Cool to room 
temperature over 10 hours.

Ramp to 600°C; Heat sample for 
15 minutes; remove and air-
quench to room temperature.

Tempered
Compressive 
residual stress. 
Complex residual 
stresses at edge.

Cleaned by rinsing with DI Water, 
Ethanol, and DI water. Blow dry 
using nitrogen. UV-Ozone.
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Indentation of Float Glass with 
Different Thermal Histories
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Vickers Indentation
200 gf hold 15 sec
Collect 15s after unloading 
before taking image
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A. Alazizi, et al. Vapors in the ambient - A complication in tribological studies or an engineering solution of tribological problems?, Friction. 3 (2015) 85–114.

Unlike other silicate glasses, soda lime wear resistance increases at higher humidity. 

As humidity increases, the physisorbed water layer:
• thickness increases (IR spectroscopy)
• structure changes (SFG)
• Environmental hydrocarbons adsorb onto the water layer (SFG, GC-MS)
• Na+ modifiers leach out

Tribology of Silicate—Glass Overview

Fused quartz
1.2 μm

Soda lime
0 μm

AF-45
0.8 μm

Sodium alumino-
silicate
1.7 μm

Archard relationship: In dry 
conditions, softer material will 

be damaged by the harder 
material

Mechanochemical reaction: 
shear-induced hydrolysis

“Mechanochemistry is a term that describes non-thermal chemical reactions occurring on solid 
surfaces solely due to mechanical processes like shear, repetitive impact, and tensile and 

compressive stresses.”

20 g load

200 cycles

Pyrex ball

SLS substrate

Pin-on-disc tribometer
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Reproducibility and variance of RH 90% wear results
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SRIR Air Side SRIR Tin Side

Note: These results were calculated from a pool of thirteen as received spectra, nine annealed spectra, and
sixteen quenched spectra. The amounts of spectra taken were the same for both tin and air side samples.

Thermal History Influences Surface Structure

Air Side Tin Side

As-received Annealed Annealed/
Quenched

As-received/ 
Tempered

As-received Annealed Annealed/ 
Quenched

As-received/ 
Tempered

Average 1062.2 1057.7 1057.8 1061.2 1058.0 1054.6 1055.1 1053.4

Std Err 0.00 0.04 0.00 0.08 0.03 0.04 0.04 0.00
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• As-received surfaces are hydrated
• 1620 cm-1: H2O bending
• 3000-4000 cm-1: OH stretching

• Annealing allows for:
• ion modifier diffusion from the 

bulk to the surface (XPS)
• Dehydration/dehydroxylation 

(XPS, ATR)

• Quenching appears to deplete the 
surface of ion modifiers.

• NBO, OH appear to be 
condensing, forming BOs.

• *BO include those that are bonded with Si or Sn. 
• *Areal densities can no be calculated for surfaces with 

high tin content (<4 at%) due to unavailable density 
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Air-side Pane 7 XPS SR-IR ATR-IR (sub-surface) Wear Profile Indention

As-received Hydrated surface 
depleted in 
modifiers

~1062 cm-1 peak 
position

Presence of 
molecular H2O and 
SiOH

Pyrex Ball: polished
Substrate: ~ 1 μm depth

HV: 564
Crack length: 28.3

Annealed Modifier 
replenishment

~4 cm-1 decrease 
from as-received
Increase in 950 cm-1 

(SiOH, NBO)

Reduced H2O, SiOH 
content

Pyrex Ball: polished
Substrate: ~ 0.2 μm depth
Wear resistance

Increase in hardness & 
crack length

Annealed / 
Quenched 

Slight increase in 
OH content

~4 cm-1 decrease 
from as-received
Slight decrease in 950 
cm-1 (SiOH, NBO)

Slight increase in 
molecular H2O, SiOH 
content

Pyrex Ball: polished
Substrate: ~ 1 μm depth

Decrease in hardness & 
crack length
Delay in crack 
formation

As-received / 
Tempered

~1 cm-1 decrease 
from as-received

Presence of 
molecular H2O and 
SiOH

Pyrex Ball: polished & 
debris
Substrate: ~ 1 μm depth

Decrease in hardness & 
crack length

Tin-side Pane 7 XPS SR-IR ATR-IR (sub-surface) Wear Profile Indentation

As-received Hydrated surface 
depleted in 
modifiers

~1058 cm-1 peak 
position

Presence of 
molecular water and 
SiOH

Pyrex Ball: polished
Substrate: ~ 1 μm depth

HV: 574
Crack length: 28.3

Annealed Modifier and Sn 
replenishment 

~3.5 cm-1 decrease 
from as-received
Increase in 950 cm-1 

(SiOH, NBO)

Reduced H2O, SiOH 
content

Pyrex Ball: polished
Substrate: ~ 0.2 μm depth
Wear resistance

Increase in hardness & 
crack length

Annealed / 
Quenched 

Decrease in 
OH,NBO content

~3 cm-1 decrease 
from as-received
Slight decrease in 950 
cm-1 (SiOH, NBO)

Reduced H2O, SiOH 
content

Pyrex Ball: polished
Substrate: ~ 0.2 μm depth
Wear resistance

Decrease in hardness & 
crack length

As-received / 
Tempered

~4 cm-1 decrease 
from as-received

Reduced H2O, SiOH 
content

Pyrex Ball: polished
Substrate: ~ 0.1 μm depth
Wear resistance

Decrease in hardness & 
crack length

12



Summary

• Annealing dehydrates and dehydroxylates the surface allowing for modifier 
diffusion 

– ↑ hardness, ↑ crack length, delays crack formation (only on air side)
– ↑ wear resistance

• Compressive stress generated by air-quenching
– ↓ hardness, ↓ crack length, delays crack formation (only on air side)
– Hydration on air-side (ATR) vs. dehydroxylation (XPS) on tin-side
– ↓ wear resistance on air-side vs.  ↑ wear resistance on tin-side

• Compressive stress generated by tempering
– ↓↓ hardness, ↓ ↓ crack length, delays crack formation (only on air side)
– Hydration on air-side (ATR) vs. dehydroxylation on tin-side
– ↓ wear resistance on air-side vs.  ↑ wear resistance on tin-side

Correlation between surface and sub-surface hydration and wear 
resistance for soda lime glasses.
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P-Values for Vickers Analysis on PPG Glass Pane 7

Air Side

Tin Side
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Tin Side

Air Side

Exact Values for Vickers Indentation on Float Glass
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P-Test for Tin Side vs. Air Side
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Experimental Methods

• What is RH (relative humidity, amount of 
vapor pressure in the atmosphere?)

• How to calculate RH (Antoine eq, maybe solve 
for each RH)

• How is the ball on flat tribometer set up? 
(Picture would probably work best, but ask. 
Ball 90 degrees to substrate, pin moved 
linearly back and forth to simulate wear)

19



• Why is it ball on flat as opposed other set ups like pin on disk or flat 
on flat?
– Contact geometry and respective contact mechanics

• What is the load you are putting on your glass? 20gf  N?  initial 
pressure  if you ball was polished then what is your new contact 
pressure (area dependent)

• What does friction coefficient mean here (contact area between 
BSB and flat substrate. Changes as a function of time)?

• Describe wear processing including abrasion, adhesion, and 
mechanochemical processes.

• Abrasion  hardness (under nitrogen so no chemical interactions involved)
• Adhesion  surface chemistry and chemical bonding (O-Si-O bonds between 

pyrex ball and SLS substrate)
• Mechanochemical  activation energies (percent hydration/humidity to cause 

adhesion reactions? Not sure about this)
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